V0.2 2206

CWS9354S

single-pole, double-throw switch

functional block

diagram

Performance **Characteristics**

typical application

base station communication

automotive electronics

Instrumentation

- Low insertion loss: 0.8dB typical @ 10K to 6GHz● wireless infrastructure
- High isolation: 50dB@10K[~]6GHz

• Operating frequency band: DC ~ 13GHz

- $38dB@6GHz \sim 8GHz$
 - 30dB@8GHz~13GHz
- Package Size: 8-lead CFP

RFC €B RF1-RF2 ESD ESD CMOS Control Driver CTRL

summarize

The CWS9354S is a high isolation, low insertion loss, high linearity single-pole, double-throw switch. The CWS9354S switches are available in a 8-lead CFP

Electrical performance table (TA= + 25°C, VCTRL =0/3. 3V, VSS=-2. 4V, VDD=LS=3. 3V)

Parameter name	test condition	minimum value	typical value	maximum values	unit (of measure)
RF Frequency Range		DC ~ 13			GHz
insertion loss	10K to 6GHz		0.8		dB
	6GHz to 8GHz		1.2		dB
	8GHz to 13GHz		1.8		dB
	10K to 6GHz		50		dB
incommunicado	6GHz to 8GHz		38		dB
	8GHz to 13GHz		30		dB
return loss	open state (math.)		-15		dB
	camouflage		-10		dB
phase coherence			0	1.5	
Amplitude consistency			0	0.1	dB
Bias Voltage (VDD)		3		5.3	V
Bias Current (IDD)				1	mA
Rise and fall time	10% to 90% RF output		30		ns
switching time	50% VCTRL to 10%/90% RF output		120		ns
Recommended Input Power	plug-in mode (math.)			31	dBm
	segregated state (physics)			26	dBm

Note: 1. The lowest frequency of the test instrument to 10K, so only display 10K above the test data 2. The chip does not have an integrated DC/DC converter module, so the chip positive/negative power (VDD/VSS) must be added to the VSS range of -2.0 $^{\sim}$ -2.4 (V)

EW

V0.2 2206

test curve

Insertion Loss vs. Frequency (@10K-10MHz)

Insertion loss vs. frequency (@10M-15GHz)

single-pole, double-throw switch

Input Return Loss VS Frequency (@10K-10MHz)

Output return loss vs. frequency (@10K-10MHz)

Input return loss vs. frequency (@10M-15GHz)

Output return loss vs. frequency (@10M-15GHz)

CWS

CWS9354S

single-pole, double-throw switch

12

10

8

6

4 2

0 -2

-4

-6

0

N 3

Phase coherence (°)

V0.2 2206

test curve

Phase coherence vs. frequency (@10K-10MHz)

4 5 9

Frequency (MHz)

Phase coherence vs. frequency (@10M-15GHz)

Amplitude consistency vs. frequency (@10M-15GHz)

CWS

RFC-RF1

RFC-RF2

0

0

00

~

V0.2 2206

CWS9354S

Operating parameters

Negative power supply VSS	-2V to 2.4V
Bias voltage VDD	3V to 5.3V
Control voltage LS, VCTRL	0V to 0.3V (Low) 3V to 5.0V (High)
operating temperature	-45°C∼+85°C

single-pole, double-throw switch

Absolute maximum rating

Bias Voltage VDD	-0.3V/5.6V	
Control Voltage LS, VCTRL	-0.5 V/VDD+0.3V	
Input power (insertion loss state)	33dBm	
Input power (isolated state)	31 dBm	
Storage temperature	-65°C∼+150°C	

CWS9354S

single-pole, double-throw switch

Package Drawing (dimensions are in millimeters)

8-lead CFP

Note: Bottom of the package is ground. Connecting the bottom of the package to ground is required.

BOTTOM VIEW

DIMS IN MM. ALL TOLERANCES ARE +/- 0.127 UNLESS OTHERWISE STATED. NOT TO SCALE

Rev. 97 170809 IIGNALB CWS

V0.2 2206 Pin Configuration Pin 1 dot marking V_{DD} 1 8 RF

CWS

Switch Regulator Series

Pin Description

Pin #	Pin Name	Description
1	V _{DD}	Nominal +3V supply connection.
2	CTRL	CMOS or TTL logic level: High = RFC to RF1 signal path. Low = RFC to RF2 signal path.
3	GND	Ground connection. Traces should be physically short and connected to ground plane for best performance.
4	RFC	Common RF port for switch.*
5	RF2	RF2 port.*
6	GND	Ground connection. Traces should be physically short and connected to ground plane for best performance.
7	GND	Ground connection. Traces should be physically short and connected to ground plane for best performance.
8	RF1	RF1 port.*
GND	GND	Bottom of the package is ground. Connecting the bottom of the package to ground is required

Note: * All RF pins must be DC blocked with an external series capacitor or held at 0 VDC.

truth table

Control and bias inputs			signaling pathway state		
Negative Supply (VSS)	Bias Voltage (VDD)	Console (LS)	Console (VCTRL)	RFC to RF1	RFC to RF2
-2V	5V	High	Low	Off	on
-2V	5V	High	High	on	Off
-2V	5V	Low	Low	on	Off
-2V	5V	Low	High	Off	on

single-pole, double-throw switch

single-pole, double-throw switch

CW

V0.2 2206

evaluation board

DeCWgnator	Description	
C1, C2, C3, C5	100pF Ceramic Capacitor 0402	
C4, C6	100nF Ceramic Capacitor 0402	
J1, J2, J5	SMA-K PCB connectors	
J6	4Pin 2mm DC Pin	
R1, R2	0Ω Resistance 0402	
U1	CWS9354S	
J1, J2, J5 recommended SMA connector NJOYMAN D550B12E01-048		
NC indicates an unused port or the device is not soldered. The NC port on the chip is externally		
connected to GND.		

Circuit Board:Rogers4350B

The circuit board of the device application should be designed according to the design method of RF circuit, the signal line is designed according to 50Ω impedance, and the grounding pin of the package shell is close to the ground (similar to that in the figure), and there should be enough grounding holes to connect the top layer and the grounding ground of the bottom layer.

CWS