Performance characteristics:

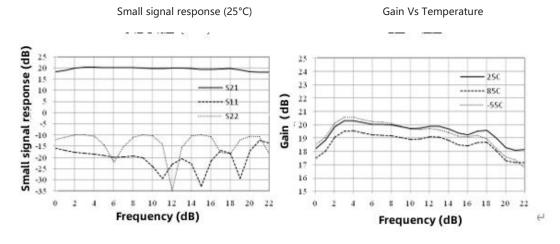
- Frequency band:DC~20GHz
- Noise factor:1.5dB
- Gain: 20dB
- Input and output return loss: >17dB/>10dB
- Output P1dB:19dBm
- Output IP3:33dBm
- Power supply:+8V@118mA
- 32 Lead 5x5 mm QFN Package: 25 mm²

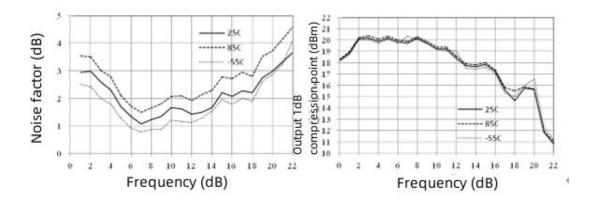
ACG2 N/C N/C N/C N/C 28 27 26 30 29 23 N/C Vgg2 2 N/C 3 22 N/C N/C 4 21 RFOUT & Vdd 5 20 N/C 19 N/C N/C 6 N/C 7 18 N/C N/C 8 17 N/C

Functional Diagram

Product Description:

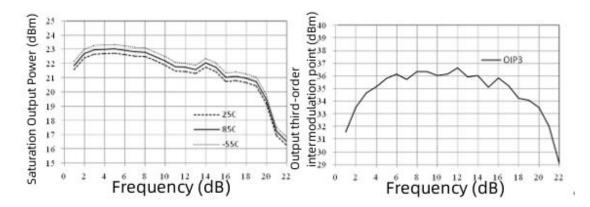
The CW-LN465SP5 is a GaAs MMIC ultra wideband low-noise amplifier chip with a frequency range covering DC~20GHz and a typical noise figure of 1.5dB throughout the band. the CW-LN465SP5 is powered by +8V.


Electrical parameters:($T_A=25^{\circ}C$, VD=+8V, VG=-0.25V)

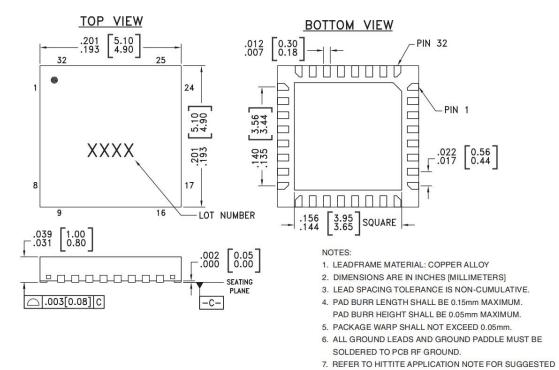

Indicators	Minimum value	Typical values	Maximum value	Unit
Frequency range	DC~20			GHz
Noise factor	1.2	1.5	3.2	dB
Gain	18.2	20	20.2	dB
Input Return Loss	17	-	-	dB
Output Return Loss	10	-	-	dB

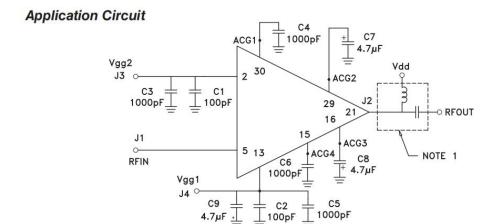
Usage limitation parameters: (Exceeding any of the above maximum limits may result in permanent damage.)

Input power	+23dBm	
Control voltage	+9V	
Storage temperature	-65℃~150℃	
Operating temperature	-55℃~125℃	


Typical curves:

Output saturation power Vs Temperature


Output third-order intermodulation point (25°C)


PIN Description

Pin Number	Function	Description	Interface Schematic	
1, 3, 4, 6 - 12, 14, 17, 18, 19, 20, 22 - 28, 31, 32	N/C	The pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.		
2	Vgg2	Gate Control 2 for amplifier. +1.5V should be applied to Vgg2 for nominal operation.	Vgg2	
5	RFIN	This pad is DC coupled and matched to 50 Ohms.	RFIN O	
13	Vgg1	Gate Control 1 for amplifier.	Vgg10	
15	ACG4		RFIN ACG4	
16	ACG3	Low frequency termination. Attach bypass capacitor per application circuit herein.		
21	RFOUT & Vdd	RF output for amplifier. Connect the DC bias (Vdd) network to provide drain current (Idd). See application circuit herein.	ACG1 O-VV RFOUT & Vdd Vdd	
29	ACG2	Low frequency termination. Attach bypass capacitor per		
30	ACG1	application circuit herein.	= '	
Ground Paddle	GND	Ground paddle must be connected to RF/DC ground.	GND	

Outline drawing: (unit mm)

LAND PATTERN.

NOTE 1: Drain Bias (Vdd) must be applied through a broadband bias tee or external bias network.